
Absoft MacFortran 2.4
    We continue to support the old MacFortran compiler in recognition of the fact that many of 
our original customers were MacFortran users.    Users of MacFortran 2.4 should, however, be
thinking about upgrading to Absoft's MPW MacFortran compiler since it contains many 
enhancements and is clearly the compiler that is getting most of Absoft's attention.

Example Programs    The example programs have neither "f77.rl" nor any subroutines linked 
to them.    They were compiled using MacFortran 2.4 without the 68020/68881 options set so
that they would run on all Macs.

Include Files    Unlike C and Pascal, standard Fortran does not support "record types", making
it cumbersome to work with multiple "instances" of shared records.    The closest 
approximation to a shared global record is a Fortran common block which has a set of 
variables equivalenced to it.    An example of such a block can be found in the 
"FaceStorMF.inc" file or the corresponding file accompanying other FaceWare modules (its 
name will contain the substring "StorMF").    "FaceStorMF.inc" declares parameter names of 
core FaceWare commands and establishes a common block that contains an array named 
"fRec" and equivalenced variables that are shared with the core FaceWare modules.    To 
make use of these variables, the following line should be inserted just after your main 
program variable declarations, but before the first executable statement:
    include FaceStorMF.inc
All program units which directly access elements of the "fRec" shared record should also 
contain the above statement.    Since numerous include statements can slow down 
compilation, you may want to create a smaller version of "FaceStorMF.inc" which contains 
only those equivalence statements which refer to elements of the storage array which you 
reference in your program, or simply make the necessary common block declaration and 
equivalence statements explicitly in your program code.

The file "FaceProcMF.inc" contains routines which are required for jumping to FaceWare 
modules.    To make these routines available to your program, insert the following statement 
as the last line of your program file (and of any files used to create stand-alone, unlinked 
subroutines):
    include FaceProcMF.inc

Writing To and Reading From Unit 9 (the Screen) when using FaceIt
If you take a look at the contents of "FaceProcMF.inc", you'll see that the default Fortran 
window, if present, is simply hidden at startup since the update events that it produces can 
cause problems for FaceIt.    Fortunately, when MacFortran writes to and reads from the 
"screen" (unit 9) it makes use of whatever window is the current port.    Since FaceIt always 
resets the current port to the active window, I/O directed to unit 9 appears in that window.    
You can change this to any other window (a modeless dialog would be a good choice) by 
simply resetting the current port using the toolbox call SETPORT before writing to unit 9.    
Note that the text written in this manner using unit 9 will not be editable, even if written to 
an editor window (a bad idea).    The text is simply being drawn on the screen, with no 
connection to the text-editing module.

Using the MacFortran 2.4 Debugger with FaceIt      After starting an application via the 
Debugger, set breakpoints within your source where you wish to examine the operation of 
your code.    Then choose "Proceed to Breakpoint" to run your program to the first 
breakpoint.    This may, of course, also require choosing an item from one of your menus if 
the code in question is only executed in response to a menu command.    When a breakpoint 
is encountered, the Mac will beep and the Debugger source window will be brought to the 
front.    If there is only one breakpoint set in your code, do not choose "Proceed to 
Breakpoint" again without doing at least one "Single Step".    The Debugger loses track of a 



breakpoint if asked to proceed in a loop from a breakpoint back to the same breakpoint.

While in the Debugger, the Debugger's keyboard shortcuts may conflict with keyboard 
commands which appear in the FaceIt menus or your program menus, in which case you 
may simply have to use the mouse to choose the affected menu item.      Finally, the 
Debugger itself requires additional stack space, meaning that you may need to increase the 
stack space for your program to get it to run properly under the Debugger.

Other Programming Tips

- When practical, use "implicit none".

- Both source and data files should end with a carriage return.

- A common mistake when making "toolbx" calls is to forget to define the value of the 
integer constant used as the toolbox procedure name.    Another mistake is to forget to 
declare "toolbx" as integer*4 when "toolbx" is being used as a function.

- When FaceIt is first called, you have the option of having it display a "deck of cards" cursor 
whenever your program has control.    This is very useful when, for example, a Fortran error 
occurs within your program since you immediately know, by the form of the cursor, that the 
error is somewhere in your code and not within FaceIt.    When such a Fortran error occurs, 
pressing the return key will usually take you back to the Finder.

- If using Select Case, you should be aware of the fact that the current version of MacFortran 
limits you to 32K of code per Select Case block.

- The compiler will not catch a mistaken number of arguments passed to a subroutine.    For 
example, "call FaceIt(0,DoInit,0,0,0)" [5 arguments rather than 6] would get by the compiler,
but will lead to unpredictable behavior of your program (probably a crash).    So count those 
arguments!

- If your program works under some startup conditions, or on some Macs, but not others, 
then look first for an uninitialized variable.    Variables are not zeroed at launch time, and will 
acquire the value of whatever garbage is sitting in memory unless you take the trouble to 
initialize them.

- MacFortran does not guarantee that strings declared in subroutines will be word-aligned on
the stack (required by toolbox calls which accept strings as arguments).    If you use such 
strings in toolbox calls, you'll get strange behavior like that seen with uninitialized variables. 
The workaround is to always use global string variables as parameters in toolbox calls 
(strings declared in your main program unit). The "uString" and "uName" variables, for 
example, are global, and can be used by your program for its own purposes, one of which 
may be to ensure that strings in toolbox calls are word-aligned.    The most likely place that 
you'll be using such toolbox calls is in plotting routines that make calls to "STRINGWIDTH" 
and "DRAWSTRING".

- The toolbox call "FLUSHEVENTS" is incorrectly documented in the MacFortran include files.   
For an example of its proper use, see the include file "FaceProcMF.inc".

- If using Edit to edit your programs, you can mistakenly type the "Enter" key which inserts 
an invisible character that will later cause problems with the MacFortran compiler.    Use 
Edit's "Show Invisibles" option to find and eliminate such characters.



- MacFortran does not allow you to pass integer constants to integer*2 subroutine 
arguments, so use integer*4 when passing constants.

- When passing variables to subroutines, the variables MUST be redeclared within the 
subroutines or they will be given undefined values.    This error is NOT caught by the 
compiler, even if you have taken the trouble to use "implicit none" in the subroutine.

- When calling unlinked, stand-alone subroutines you may find that MacFortran will lose track
of the location of such routines if the user, via a File menu command, has changed the 
default volume by opening or saving files.    The solution (short of linking) is for you to reset 
the default volume before calling such subroutines.    (You can also try putting the 
subroutines in the active System Folder, but this is not foolproof.)    You can do this via the 
UtilIt command "SetRef".

- The linking and resource movement required to create a "stand-alone" application are 
outlined below.    You can do some or all of the steps outlined, but they must be done in this 
order.
 1. recompile program w/o "load" commands for routines to be linked
 2. in the following order, link some or all of:    program-specific subroutines (if any), 
"JumpIt.sub", "toolbx.sub", and either "f77.rl" or "m81.rl" (use "y" linker option to get the 
runtime library linked)
 3. use MoveIt to move FaceWare resources to program file
 4. use ResEdit to add the resources from your resource file


